VEuPathDB Webinar 4 June 2020: Motifs and Regular expressions

Slide deck - <u>https://docs.google.com/presentation/d/1vvLkSxix-</u> 9S5718WB0LLe4wWZ1QD7FtsbEtkKpf5dLU/edit#slide=id.g862fa1b519_3_168

Example: Find EcoR1 restriction enzyme sites within *Plasmodium falciparum* 3D7 genes.

EcoR1 is a restriction enzyme that will cleave DNA whenever it finds the sequence **GAATTC**. EcoR1 can tolerate no ambiguity in the DNA sequence; it always needs GAATTC. VEuPathDB sites have a search called 'Identify Genomic Segments based on DNA Motif Pattern' that will locate and return DNA motifs as genomic segments (a VEuPathDB record type). We will use the DNA Motif Pattern search to find areas of the *Plasmodium falciparum* 3D7 genome that contain the GAATTC motif. The search returns a list of genomic segments. To correlate these genomic segments with genes, we will run a second search for all genesin Plasmodium falciparum 3D7 and use the colocation tool to reduce the list to only those genes that contain the genomic segments we found with the DNA Motif Pattern search. The final strategy will look like this. although future releases of PlasmoDB may return different numbers, since the genome and annotation for *Plasmodium falciparum* 3D7 may change.

- 1. Navigate to the DNA motif search.
 - a. Go to the home page beta.plasmodb.org <u>https://beta.plasmodb.org/plasmo.beta/app/</u>
 - b. Begin typing DNA motif in the Search For... filter and then choose DNA Motif Pattern

- 2. Initiate the DNA Motif Pattern Search
 - a. Choose to search *Plasmodium falciparum* 3D7.
 - b. Type the EcoR1 recognition site, GAATTC, into the **Pattern** field.
 - c. Click Get Answer

Identify Genomic Segments based on DNA Motif Pattern

Note: You may select up	to 1 values	
for this paramet	ter. f 45	
I Selected, out of	hose	
select all clear all	liese	
3d7	× 3	
Aconoidasida		
- Haemosporida		
Plasmodiidae		
Plasmodium falci	iparum	
✓ Plasmodium f	falciparum 3D7	
add these clear these select only th	hese	
select all clear all		
Dattorn		
Fattern		
GAATTO		

d. Your results are 'segments' of DNA that contain the motif. Each segment has a known location within the *P. falciparum* 3D7 genome.

My	Search Str	ategies		
Opened	(1) All (304) P	ublic (44) Help		
Unnan	ned Search Strategy	* /		
				Ē 🖉 🖺 < 🛍 🗙
DN 7,970	A Motif 5 Segments Step 1	step		
7,976 G	enomic Segments	Revise this search		
Genomic	Segment Results Genom	nic Locations		
ŀ	(123	399	Rows per page: 20 v	Download Add to Basket Add Columns
-	Segment ID	📙 Organism 😢	💠 Genomic Location 😮 😫	≑ Motif 😢
-	Pf3D7_01_v3:101289- 101295:f	Plasmodium falciparum 3D7	Pf3D7_01_v3:101,289101,295 (+)	GTAGGAAGTAGTGAACAAATGAATTCAATAACATACAATTTCGAAA
-	Pf3D7_01_v3:101289- 101295:r	Plasmodium falciparum 3D7	Pf3D7_01_v3:101,289101,295 (-)	TTTCGAAATTGTATGTTATTGAATTCATTTGTTCACTACTTCCTAC
-	Pf3D7_01_v3:112882- 112888:f	Plasmodium falciparum 3D7	Pf3D7_01_v3:112,882112,888 (+)	CTGTTGCTCTATCTACAACAGAATTCTCATTTGGTTCAGTACTTGA

- 3. Colocate these EcoR1 motifs with *Plasmodium falciparum* 3D7 genes.
 - a. Click Add a step and choose Use Genomic Colocation to combine with other features.
 - b. Choose to run A new search for Genes based on Taxonomy, Organism

	DNA Motif 7.976 Segments Step 1	
*	Add a step to your search strategy o	×
Combine with other Genomic Segments	Use the relative position of features on the genome between your existing step and the new step to identify features to keep in the final result. Choose which feature to colocate. From A new search A new stating strategy My basket	
Use Genomic Colocation to combine with other features	Genes Taxonomy Q.Organism	

- c. From the search form choose *P. falciparum* 3D7 and click Get Answer
- d. Arrange the colocation tool to read "Return each gene from the new step whose exact region overlaps the exact region of the genomic segment from the current step and is on either strand".

← Add a ster	ep to your search strategy o	×
"Return each Gene from the new step vhose exact regio	on overlaps the exact region of a Genomic Segment from the current step and is on either strand	· · · ·
Region Gene	Region Genomic Segment	
Exact Upstream: 1000 bp	Exact Upstream 1000 bp	
O Downstream: 1000 bp	Downstream: 1000 bp	
begin at: start v · v 0 bp	Custom: begin at: [start v] + v 0 bp	
end at: stop v v 0 bp	end at: stop v + v 0 bp	
	Run Step	

e. The result is a list of genes that contain the EcoR1 restriction site (the motif we searched for) and the Region column shows the location of the motif.

Unnan	ned Search Str	ategy * 🥒								
	0 5,:	rganism 712 Genes						() (° (°	< 🛍	x
DN 7,971	IA Motif 6 Segments 1,1 Step 1	Step 2	dd a step							
1 969 6	enes (1701 o	rtholog groups)								
1,909 0	ienes (1,7910									
Gene Res	Genome Vie	w Analyze Resul	ts							
Genes:	1,969 Transcripts	:: 1,999 🗌 Show	Only One Transcript Per Gen	e						
	1 2	3 100	Rows per page: 2	20 🗸			Download	Add to Basket	Add Colum	ins
	🜲 Gene ID	Transcript ID	崖 Organism 🝞 🕄	Genomic Location (Transcript)	 Product Description S 		Region 8	Matched R	egions 🙁	
@	PF3D7_0100300	PF3D7_0100300.1	Plasmodium falciparum 3D7	Pf3D7_01_v3:4236746507(-)	erythrocyte membrane protein 1, PfEMP1	2	42367 - 46507 (-)	Pf3D7_01_v3:4 44538:r: 44,532 Pf3D7_01_v3:4 44538:f: 44,532	1532- - 44,538 (-); 1532- - 44,538 (+)	^
-	PF3D7_0102200	PF3D7_0102200.1	Plasmodium falciparum 3D7	Pf3D7_01_v3:98819102282(+)	ring-infected erythrocyte surface antigen	2	98819 - 102282 (+)	Pf3D7_01_v3:10 101295:r: 101,2 Pf3D7_01_v3:10 101295:f: 101,2)1289- 89 - 101,295)1289- 89 - 101,295	(-); (+)

Example: Find Avall restriction enzyme sites within *Plasmodium falciparum* 3D7 genes.

We will use the workflow shown above to find Avall sites within *Plasmodium falciparum* 3D7 genes. Avall is a restriction enzyme that will cleave DNA whenever it finds the sequence **GGACC** or **GGTCC**. So Avall can tolerate some ambiguity in the DNA binding sequence; the middle base can either be an A or a T. To inform the 'Identify Genomic Segments based on DNA Motif Pattern' search about the ambiguous motif that we want to find, we must use a regular expression to communicate the motif sequence.

GGACC or GGTCC = GG[AT]CC (regular expression)

The workflow above will find genes that contain the DNA motif in Step 1. The only change needed in the workflow is to enter the Avall regular expression for the Pattern in Step 1.

	Revise your step				
Identify Genomic Segments based on DNA Motif Pattern					
🛿 Organism					
Note: You may select up to 1 values for this 1 selected, out of 45 select all (clear all expand all collapse all Filter list below Caconoidasida b Haemosporda select all (clear all expand all collapse all Pattern GG[AT]CC	s parameter.				
GGIATICC	Revise				

The final strategy will look like this:

Optional: Find Avall sites upstream of Pf3D7 genes. The above workflow finds genes that contain restriction sites. To find genes with upstream restriction sites, change the colocation tool to read. "Return each Gene from Step 2 whose upstream region (Upstream 1000bp) overlap with the genomic segments in Step 1 and are on either strand."

Your result will change to:

Example: Explore *Anopheles gambiae* str. PEST genes that have zinc finger domains and the genes that they may regulate.

A zinc finger is a small protein structural motif that is characterized by the coordination of one or more zinc ions (Zn2+) to stabilize the fold. Proteins that contain zinc fingers (zinc finger proteins) are classified into several different structural families. In spite of the large variety of these proteins, the vast majority of zinc finger proteins function as interaction modules that bind DNA, RNA, proteins. Variations in structure serve primarily to alter the binding specificity. (https://en.wikipedia.org/wiki/Zinc_finger)

A zinc finger protein will carry some version of a zinc finger structural motif. Once such motif is described by the PROSITE entry PS00344 GATA-ZN_FINGER_1 <u>https://prosite.expasy.org/PS00344</u>. The pattern described for this zinc finger is:

C-x-[DNEHQSTI]-C-x(4,6)-[ST]-x(2)-[WM]-[HR]-[RKENAMSLPGQT]-x(3,4)-[GNEP]x(3,6)-C-[NES]-[ASNR]-C

Written as a regular expression, the motif is:

```
C.[DNEHQSTI]C.{4,6}[ST].{2}[WM][HR][RKENAMSLPGQT].{3,4}[GNEP].{3,6}C[NES][ASNR]C
```

The genes that zinc finger proteins regulate will contain a 'GATA box' DNA binding motif in their regulatory regions. The motif is short and relatively general:

(A/T)GATA(A/G)

and can be written as a regular expression:

[AT]GATA[AG].

In this exercise we will use beta.vectorbase.org to find *Anopheles gambiae* str. PEST genes whose proteins contain our zinc finger domain and we will also search for possible binding partners by searching for genes that contain the GATA zinc finger domain upstream of their start sites.

- 1. Navigate to the Protein Motif Pattern search.
 - a. Go to the home page beta.vectorbase.org https://beta.vectorbase.org/vectorbase.beta/app/
 - b. Begin typing Protein motif in the Search For... filter and then choose Protein Motif Pattern.
 - c. At the search form, enter the protein regular expression, choose Anopheles gambiae str. PEST as the organism and click Get Answer. Protein regular expression=
 C.[DNEHQSTI]C.{4,6}[ST].{2}[WM][HR][RKENAMSLPGQT].{3,4}[GNEP].{3,6}C[NES][ASNR]C

Search for	Identify Genes based on Protein Motif Pattern
protein 🗶 🖉	Pattern CIDNEHQSTIC (4.6)[ST]
Immunology Q Epitope Presence (IEDB) Protein features and properties Q InterPro Domain Q Isoelectric Point Q Molecular Weight Protein targeting and localization Q Predicted Signal Peptide Q Transmembrane Domain Count Sequence analysis Q Protein Motif Pattern	Note: You may select up to 5 values for this parameter. selected, out of 43 add these (c) these select only these select all is of all gamb add these (c) the select only these select all is of all parameters Culcicide Culcicide Culcicide Anophetes gambiae Componets gambiae Select all is of all all clear all Select all is of all is

d. Your results are 5 genes (7 transcripts) whose protein products contain the motif. While three of these genes are already annotated as GATA-binding proteins, two genes (3 transcripts) returned by the search are annotated as unspecified product. In one search we identified functions for two genes with previously unknown functions!

My	Searc	n Strat	egies						
Opene	ed (1) All (1) Public (4	4) Help						
Unna	Unnamed Search Strategy * 🕜								
\bigcap					<u> </u>	< 💼 x			
	ot Motif 5 Genes Step 1	Add a step							
				-					
5 Gen	es (5 ortholo	g groups) 📑	Revise this search						
Gene F	Genome	View	ce Results						
Gene	s: 5 Transcripts	: 8 🗌 Show O	nly One Transcript Per Gene						
	Rows per page:	20 🗸			Download Add to Basket	dd Columns			
6	🗘 🌲 Gene ID	Transcript ID	🗜 Organism 🝞 🙁	Genomic Location (Gene)	 Product Description S 	Match Locations			
-	AGAP002235	AGAP002235- RA	Anopheles gambiae str. PEST	AgamP4_2R:17,971,00818,005,899(-)	GATA-binding protein 4/5/6 [Source:VB Community Annotation]	(120-144), (177 201)			
-	AGAP002236	AGAP002236- RA	Anopheles gambiae str. PEST	AgamP4_2R:18,013,75218,028,826(-)	unspecified product	(503-527), (566 590)			
-	AGAP002236	AGAP002236- RB	Anopheles gambiae str. PEST	AgamP4_2R:18,013,75218,028,826(-)	unspecified product	(573-597), (636 660)			
-	AGAP002238	AGAP002238- RA	Anopheles gambiae str. PEST	AgamP4_2R:18,033,67518,055,975(-)	unspecified product	(747-771), (801 825)			
-	AGAP004228	AGAP004228- RA	Anopheles gambiae str. PEST	AgamP4_2R:52,246,05152,346,042(-)	GATA-binding protein 1/2/3 [Source:VB Community Annotation]	(338-362), (397 421)			
-	AGAP004228	AGAP004228- RB	Anopheles gambiae str. PEST	AgamP4_2R:52,246,05152,346,042(-)	GATA-binding protein 1/2/3 [Source:VB Comp Annotation]	(227-251). (286 NTY CHAT			

- 2. Start a new strategy by initiating a DNA Motif Pattern search.
 - a. Choose to search Anopheles gambiae str. PEST.
 - b. Enter the regular expression that represents the GATA site consensus sequence [AT]GATA[AG] into the **Pattern** field.
 - c. Click Get Answer

Search for	Identify Genomic Segments based on DNA Motif Pattern
DNA 🛪 😵	Note: You may select up to 1 values for this parameter.
Genomic Segments	add these leafterse i select only these select and user all these select and user all these selects and user all the select an
Q DNA Motif Pattern	(am x) Arthropoda Insecta Objetera Outlicidae Anopheles gambiae Anopheles gambiae Properena Anopheles gambiae str. PEST add these (clear these is elect only these select all (clear all
	Get Answer

d. Your results are 'segments' of DNA that contain the motif. Each segment has a known location within the *Anopheles gambiae* str. PEST genome. The search returned over 500,000 motifs!

511,1	VA Motif 44 Segments Step 1	tep				a < 🖮	×
511,144	Genomic Segments	Revise this search					
Genomic S	Segment Results Genomic L	Locations					
4	1 2 3	25,558	ws per page: 20 🗸	Download	Add to Basket	Add Column	IS
Ē	Segment ID	崖 Organism 😮	🔷 Genomic Location 😮 😣	🔷 Motif 😣			
	AAAB01000047:10251- 10257:r	Anopheles gambiae str. PEST	AAAB01000047:10,25110,257 (-)	TTTCTACCGCATCTTTAATTTGATAGA	ATAATATGCTTO	GCCGCTGGT	A
	AAAB01000047:10989- 10995:f	Anopheles gambiae str. PEST	AAAB01000047:10,98910,995 (+)	AAATAAATTGTAGTCTTCAAAGATAA	TGGTAAACTTA	ACATCGATA	
	AAAB01000047:12244- 12250:f	Anopheles gambiae str. PEST	AAAB01000047:12,24412,250 (+)	CCACACCTCTCACAAAGGTGTGATAA	ATGTAGTTATA	ATTTTCCTA	

- 3. Colocate these GATA motifs with *Anopheles gambiae* str. PEST genes.
 - a. Click Add a step and choose Use Genomic Colocation to combine with other features.
 - b. Choose to run A new search for Genes based on Taxonomy, Organism

c. At the search form choose *Anopheles gambiae* str. PEST for the **Organism** parameter.

r ocreoted, out	of 43
add these clear these select only these select all clear all	
gamb	%
 ☐ Ninopeda ☐ Diptera ☐ Culicidae ☐ Anopheles ☑ Anopheles gambiae ☑ Anopheles gambiae str. PES' add these clear these select only these select all clear all 	Т
select all clear all	Contin

d. Arrange the colocation tool to read "Return each **gene from the new step** whose **upstream 200bp** region **overlaps** the **exact** region of the genomic segment from the current step and is on **either** strand".

s for step Genes by Rei Loc 🖌			
n each Gene from Step 2 v whose upstream regi	on overlaps v the	exact region of a Genomic Segment from Step 1 and is on either strand	
Region Gene	H	Region Genomic Segment	
Exact Upstream: 200 bp		Exact Upstream: 1000 bp	
Downstream: 1000 bp		O Downstream: 1000 bp	
begin at: start v 200 bp		begin at: start v v 0 bp	
end at: start V V 1 bp		end at: stop v v 0 bp	

e. The result is a list of genes whose upstream 200bp regions contain the GATA binding motif. The Region column shows the location of the motif.

Organism 13,796 Genes Step 1 Step 2								
4,519 Genes (3,610 ortholog groups)								
Gene Results Genome View Analyze Results								
Genes: 4,519 Transcripts: 5,029 🗌 Show Only One Transcript Per Gene								
4 1 2 3 252 Image: Base of the second sec								Add C
-	🜲 Gene ID	Transcript ID	🗢 Organism 🝞 😢	Genomic Location (Transcript)	↓≟ Product Description		Region 😢	
-	AGAP000422	AGAP000422- RA	Anopheles gambiae str. PEST	AgamP4_X:75937777598788(+)	(heparan sulfate)-glucosamine 3- sulfotransferase 3 [Source:VB Community Annotation]	1	7593577 - 7593776	(+)
	AGAP010885	AGAP010885- RA	Anopheles gambiae str. PEST	AgamP4_3L:1247859112480731(-)	(S)-2-hydroxy-acid oxidase [Source:VB Community Annotation]	2	12480761 - 124809	60 (-)
-	AGAP005618	AGAP005618- RA	Anopheles gambiae str. PEST	AgamP4_2L:1792022617920992(-)	1,2-dihydroxy-3-keto-5- methylthiopentene dioxygenase [Source:UniProtKB/TrEMBL;Acc:Q7Q6X6]	2	17921263 - 179214	62 (-)
-	AGAP007113	AGAP007113- RA	Anopheles gambiae str. PEST	AgamP4_2L:4296300442964452(+)	1-acyl-sn-glycerol-3-phosphate acyltransferase gamma [Source:VB Community Annotation]	1	42957794 - 429579	93 (+)