RNA sequence data analysis via VectorBase Galaxy

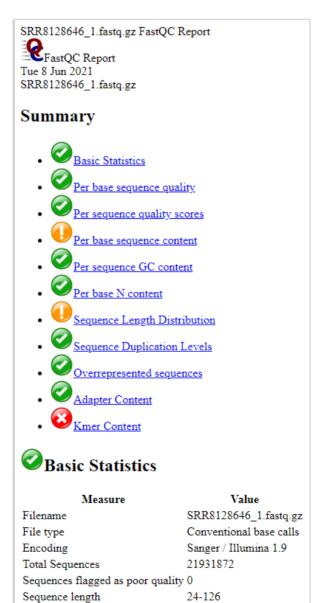
Part II: View & interpret the results

Learning objectives:

- Examine the results from the Galaxy RNA-Seq analysis workflow
- Import data from Galaxy to VectorBase My Workspace
- Analyze the results using VectorBase interface and tools

Additional resources:

- FastQC Result Interpretation: https://workshop.eupathdb.org/athens/2019/exercises/fastqc_results-2.pdf
- Beginner DESeq2 guide: https://bioc.ism.ac.jp/packages/2.14/bioc/vignettes/DESeq2/inst/doc/beginner.pdf
- FastQC output: <u>https://workshop.eupathdb.org/athens/2019/exercises/fastqc_output.pdf</u>
- SNP Eff manual: <u>http://snpeff.sourceforge.net/SnpEff_manual.html</u>
- Trimmomatic Manual: <u>http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/TrimmomaticManua</u> <u>1_V0.32.pdf</u>

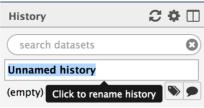

If everything worked out you should see a list of completed workflow steps (Green). The workflow generates many output files, however not all of the output files are visible. You can explore all the hidden files clicking on the word "hidden" (red circle) – this will reveal all hidden files.

Analyze Data			Using 188.9 GE
VEuPathDB		GG-v5.4	History C 🗘 🗌
Interpret Athene, Teche & Rect Internetics Reserves	ur inactive datasets (inputs and outputs). Any dataset that has not :	been undated in the	search datasets
50 days will be removed. Please k you for your cooperation.	e to the VEuPathDB Galaxy Si	vanted histories.	(unstranded) 21:GTM vs 42:Peru delta 26 shown 121 hidden 48.64 GB
	Many more output files are available to explore		147: DESeq2 plots on data 137, data 135, a nd others
	Differential expression data on the two collections		145: DESeq2 result fil e on data 137, data 1 35, and others
			144: BAM to BigWig on collec tion 120 a list of 3 datasets
			140: htseq-count on collectio x n 120 a list of 3 datasets
			139: htseq-count on collectio n 120 (no feature) a list of 3 datasets
	Read counts per gene or exon (depending on chosen		132: htseq-count on collectio x n 116 a list of 3 datasets
	parameters)		131: htseq-count on collectio x n 116 (no feature) a list of 3 datasets
	Coverage data in BigWig format		124: BAM to BigWig on collec tion 116 a list of 3 datasets
			120: HISAT2 on collection 11

Step 1: Explore the FastQC results. To do this find the step called "FastQC on collection ##: Webpage". Click on the name this will open up the FastQ pairs, click on one of them then click on view data icon () on either forward or reverse.

		FastQC on collection 13: Webpage a list of paired datasets			
		Add tags]	≺ Back to FastQC on co Webpage	ollection 13:
Webpage	×	SRR5260544.fastq a pair of datasets		SRR5260544.fastq a pair of datasets	
a list of 3 dataset pairs		SRR5260545.fastq		forward	۲
		a pair of datasets		reverse	۲
		SRR5260546.fastq a pair of datasets			

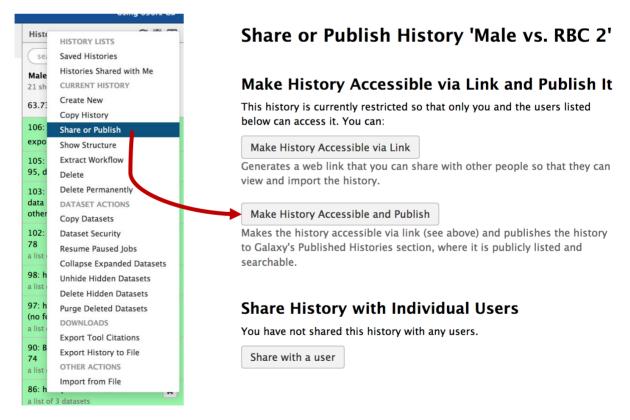
Note that each FastQ file will have its own FastQC results. An explanation of each of the FastQC results is provided as a link on the first page of this tutorial or at the bottom of the FastQC results page.



49

%GC

Step 2: Sharing histories with others:


a. Make sure your history has a useful name – you can change the name by clicking on "unnamed history"

b. Click on the history options menu icon

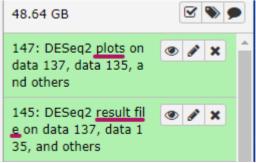
	. ↓
History	C 🕈 🗆
search datasets	History options
Male vs. RBC 2 21 shown, 85 hidden	
63.73 GB	S D
106: exportToEuPathDBInfo.htm	🕑 🖋 🗙 nl
105: DESeq2 plots on data 95, data 93, and others	• <i>•</i> ×

c. Select the "Share or Publish" option, the click on the "Make History Accessible and Publish" button in the center section.

3

- d. To import a shared history, go to the "histories" section (under the shared data menu item).
- e. Find the history you would like to import and click on it.

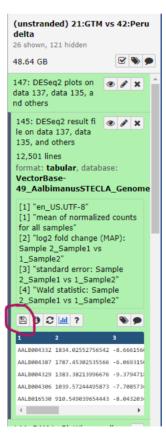
			-		
	Analyze Data	Workflow	Shared Data -		
			Data Librarie	s	
	Share	e or Pub	Histories	ale	vs. RBC 2
			Workflows		
	Make	History A	Visualization	s ca	nd Publish I
		ory is currently		and	the users listed
	below car	n access it. Yo	u can:		
Published H	Histories				
search name, annot	tation, owner, and tags	Q			
Advanced Search					
Name		Annotation C	Owner	Community Rating Con	nmunity Tags Last Updated↓
Group2_SNP_Crypto		c	arlos-perez6	****	May 17, 2018
imported: Group5_S	NP	k	ylecvdb-301635443	****	May 17, 2018
imported: Group2_S	NP_Crypto		risztian-twaruschek- 178549293	*****	May 17, 2018
ished Histories o	carlos-perez6	<u>6</u> Group2_	SNP_Crypto		
imported: Group6_S	NP	т	LICK-301032213	ппппп	May 17, 2018
Group1_SNP_Afumig	gatus (AF10->AF293)	0	0000-0001-9769-5029	****	May 16, 2018
Candida albicans SC	5314 grown in YPD and serur	n c	arlos-perez6	****	May 15, 2018
Afumigatus-RNASeq	1	n	nihwa2ksu-301635723	****	May 15, 2018
_		4		ala da da da da	N 15 2019


f. Click on the import link.

Step 3: Explore the differential expression results:

DESeq2 is a package with essential estimates expression values and calculates differential expression. DESeq2 requires counts as input files.

We will explore two output files:


- A. DESeq2 <u>Plots</u> you can view these directly in galaxy by clicking on the view icon. These plots give you an idea about the quality of the experiment. This program user guide (link in the 1st page of this tutorial), includes a detailed description of the graphs.
- B. DESeq2 <u>results file</u> this is a table which contains the actual differential expression results. These can be viewed within Galaxy, but it will be more useful to download this table and open in an spreadsheet program (e.g. Excel) so you can sort results and genes of interest.

COLUMN	DESCRIPTION
1	Gene Identifiers
2	mean normalized counts, averaged over all samples from both conditions
3	the logarithm (to basis 2) of the fold change (See the note in inputs section)
4	standard error estimate for the log2 fold change estimate
5	Wald statistic
6	p value for the statistical significance of this change
7	p value adjusted for multiple testing with the Benjamini-Hochberg procedure which controls false discovery rate (FDR)

The tabular file contains 7 columns:

C. To download the table, click on the step then click on the save icon.

*** important: the file name ends with the extension .tabular – change this to .txt then open the file in Excel.

D. Type the column headers. Explore the results in Excel. For example, sort them based on the log2 fold change – column 3.

	Α	В	С	D	E	F	G	Н	I.
1	Gene IDs	Counts	Log2 FC	SE Log2 FC	Wald statistic	p-value	FDR		
2	AALB0043	1834.026	-8.66616	0.5762166	-15.03975373	4.03E-51	9.59E-48		
3	AAI								
4	AAI Sort							1	^
5		dd Level	🗙 Delete Le	evel 🕞 Co	py Level 🔿	Option	ns	My data ł	has headers
6			<u> </u>						-
7	AAI Colur			Sort O	n		Order		
8	AAI Sort b	V Log2 FC	;	✓ Cell Va	alues	\sim	Largest to	Smallest	\sim
9	AAI								

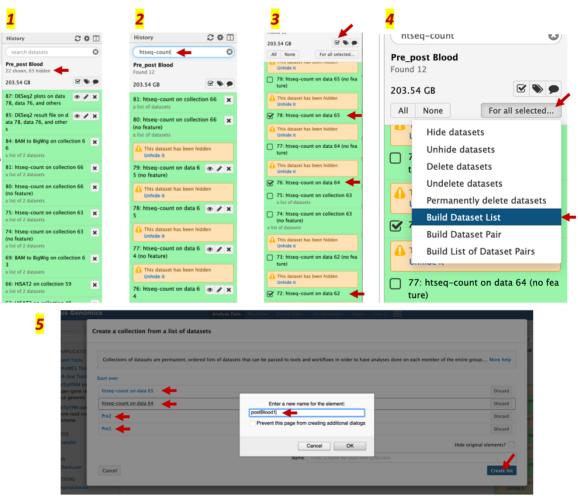
E. Pick a list of gene IDs from column 3 that are up-regulated with a good corrected P-value (column 7; Filter the NA values) and load then into VectorBase using the Gene by ID search.

	А	В	С	D	E	F	G	Н	I.
1	Gene II 🔻	Counts 🔻	Log2 FC 🔻	SE Log2 💌	Wald statis 💌	p-value 🔻	FDR 🖵		
3177	AALB0016	5.910172	6.481772	1.9507769	3.322661552	0.000892	0.008626		
3179								2	×
3180	A4 Sort							f	^
3181	AA + Ad	d Level	< Delete Lev	el [<u>] C</u> op	v Level	Option	s	My data ha	s headers
3182		,							
3186	A4 Column	ו 		Sort Or	ı		Order		
3187	A/ Sort by	Log2 FC		Cell Val	lues	\sim	Largest to Si	mallest	\sim
3189	AA Then by	/ FDR		Cell Val	lues	\sim	A to Z		\sim
3202	A/								

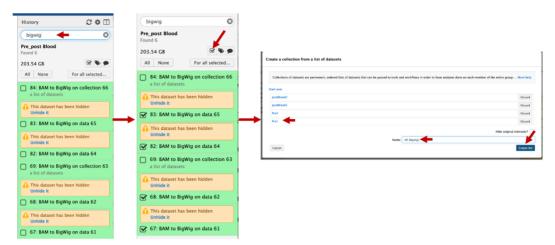
F. You can then analyze these results by GO enrichment for example. Do the same for down-regulated genes.

	G
Gene ID(s) 125 Genes Step 1	
125 Genes (111 ortholog groups) Revise this :	search Gene Results Genome View Gene Ontology Enrichment × Analyze Results
Organism Filter select all clear all expand all collapse all Hide zero counts Search organisms Q	Gene Ontology Enrichment Find Gene Ontology tarms that are enriched in your gene result. Read More Parameters
	Organism () Anopheles albimanus STECLA Ontology () Molecular Function Cellular Component Biological Process
☐ Hide zero counts	Evidence 🕑 💟 Computed V Curated select all clear all
=	Limit to GO Slim terms 😧 💿 No O Yes
	P-Value cutoff () (0 - 1)
	Submit

G. Can you find genes are that are uniquely up or down regulated in the conditions tested?


Exporting data to VEuPathDB

The VEuPathDB RNAseq export tool provides a mechanism to export your RNAseq results (TPM values) and BigWig RNAseq coverage files. The advantage of doing this is that it allows you to search the TPM data using the RNAseq search in VEuPathDB and view the BigWig files in the genome browser.


However, to use this feature you need to generate TPM values for genes in your datasets and organize your results into two collections, one for the TPMs and one for the BigWigs.

First let's organize the files (see matching screen shots below):

- 1. Click on the link at the top of your history that says "## hidden". This will show all hidden files.
- 2. Use the search datasets box at the top of your history to find any file in your history with the work "htseq-count".
- 3. Click on the "operation on multiple datasets" tool and select the individual htseqcount files. These should look something like this: htseq-count on data 65. *Note if you are comparing two conditions each done in triplicate then you should have selected 6 files.*
- 4. Click on the "For all selected" button and choose the "Build Dataset List" option.
- 5. In the popup, rename each of the samples and give the collection a name, then click on the Create List button.

6. Repeat the same steps to create the list of BigWig files (See screen shots).

7. Click on clear search to see all results in your history.

		History	C 🕈 🗆
		search datasets	0
History	€ † □	Pre_post Blood 89 shown, hide hidden	
history		203.54 GB	۲ 🌑 🗩
bigwig Pre_post Blood	clear	89: All Bigwigs a list of datasets	×
3 shown, hide hidden	search (esc)	88: All gene counts a list of datasets	×
03.54 GB		87: DESeq2 plots on da 78, data 76, and other	
		This dataset has bee Unhide it	n hidden
		86: Independent filteri esult file on data 78, d 76, and others	
		85: DESeq2 result file of ata 78, data 76, and ot s	- b
		84: BAM to BigWig on o	collection 6

Now that your count and bigwig files are nice and organized, the next step is to convert the counts into TPMs. To do this follow these steps:

- 1. Select the HTSeqCountToTPM tool (under the VEuPathDB RNAseq tools in the left menu).
- 2. Make sure the list of count files is selected.
- 3. Select the reference organism.

4. Click on Execute.

	Analyze Data Workflow Shared Data - Visualization - Help - User -
Fools 1	HTSeqCountToTPM compute TPM from per-gene read counts and reference genome (Galaxy Version TPMtool 1)
search tools	gene counts of (sense) aligned RNA-Seq read
/EUPATHDB APPLICATIONS	□ 42 □ 88: All gene counts 2
/EuPathDB Export Tools	🚓 This is a batch mode input field. Separate jobs will be triggered for each dataset selection.
/EuPathDB OrthoMCL Tools	sense counts file
/EuPathDB RNA-Seq Tools	Double-stranded dataset?
HTSeqCountToFPKM compute	No
FPKM from per-gene read counts	Is the dataset double-stranded?
and reference genome	Will you select an annotation file from your history or use a built-in gff3 file?
HTSeqCountToTPM compute TPM from per-gene read counts and	Use a built-in annotation
reference genome	Select a genome annotation
DATA TRANSFER	FungiD8-29_AfumigatusAf293_Genome
Globus Data Transfer	✓ Execute
Get Data	4
Collection Tools	TPMtool Overview This tool computes per-gene TPM values from a file (or sense-antisense pair of files) of per-gene read counts, together with a referen
Lonection roots	GFF format

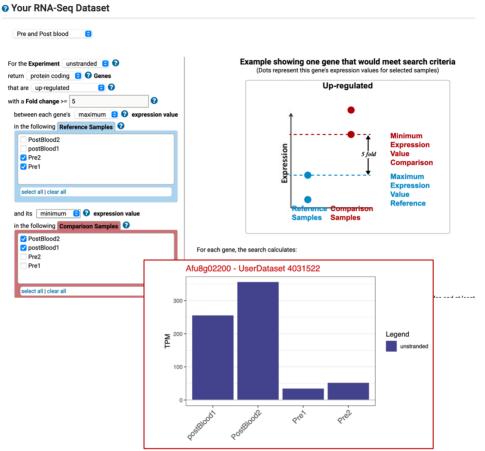
Optional: Click on "hide hidden" to clean up your history a bit.

Export data to VEuPathDB. To export the TPM and BigWig files follow these steps:

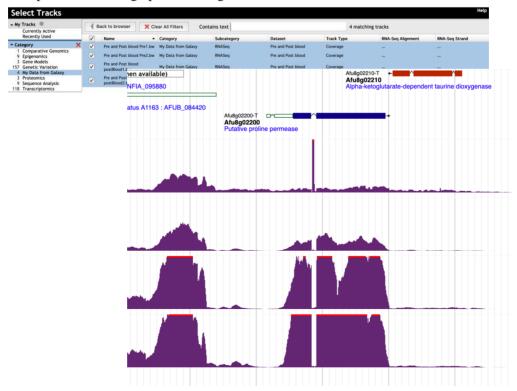
- 1. Click on "VEuPathDB Export Tools" in the left-hand panel.
- 2. Click on the tool called "RNA-Seq to VEuPathDB"
- 3. Fill up the export tool and select the correct files to export (see screen shot).

စ္ဖာရွိ globus Genomics	Analyze Data Workflow Shared Data - Visualization - Help - User -		Using 656.0	GB
Tools 📩	RNA-Seq to VEuPathDB Export an RNA-Seq result to VEuPathDB (Galaxy Version 1.0.0)	His	story 📿 🛱	• 🗆
search tools	My Data Set name:	(1	search datasets	Θ
VEUPATHDB APPLICATIONS	Pre and Post blood		e_post Blood	
VEuPathDB Export Tools	specify a name for the new dataset	26	shown, 73 hidden	
Bigwig Files to VEuPathDB Export	Is your dataset strand-specific?	205	3.54 GB 🗹 🕷	, ,
one or more bigwig files to	No		HTSegCountToTPM on collecti	
VEuPathDB where they can be viewed as tracks in the Genome	Is this a strand-specific dataset?		88: antisense gene expression	×
Browser.	BigWig collection:	a lir	st of 4 datasets	
RNA-Seg to VEuPathDB Export an	89: All Bigwigs	98	HTSeqCountToTPM on collecti	×
RNA-Seq result to VEuPathDB	Select the BigWig collection to include in the new VEuPathDB My Data Set. The bigwig collection you select here must be mapped to the refreence genome that you select below.		88: gene expression st of 4 datasets	
VEUPathDB RNA-Seg Tools	TPM or FPKM collection:	89	All Biawias	×
	98: HTSeqCountToTPM on collection 88: gene expression		st of 4 datasets	-
DATA TRANSFER	Select the TPM or FPKM collection. For an unstranded dataset, its name should include the phrase 'gene expression'.	88	All gene counts	×
Globus Data Transfer	My Data Set summary:	a lir	st of 4 datasets	
Get Data Collection Tools	Pre and Post blood		DESeq2 plots on data 🛛 👁 🖋	×
File Transfer Checksum	My Data Set description:	78,	, data 76, and others	
NGS APPLICATIONS	Pre and Post blood		DESeq2 result file on d 💿 🖋	×
NGS APPLICATIONS NGS: QC and manipulation		ata	78, data 76, and other	
NGS: Assembly	• • • • • • • • • • • • • • • • • • •			
NGS: Mapping		84:	BAM to BigWig on collection 6	×
NGS: Mapping QC		a lit	st of 2 datasets	
NGS: HLA Typing	✓ Execute	81	htseq-count on collection 66	×
NGS: RNA Analysis	() What it does (check this Tutorial!)		st of 2 datasets	-
NGS: miRNA	This tool exports an RNA-Seq result to a VEuPathDB site creating a new My Data Set to contain them.	80:	htseq-count on collection 66	x

Explore your data in VEuPathDB: Go to the VEuPathDB database that your data belongs to (e.g. VectorBase).


1. Click on "My Workspace" > "My datasets".

2. You should see the dataset you exported from Galaxy in this list. Click on it and explore the dataset page.


			C Only show o	lata sets related to VectorB	ise 017.83 M (0%) 0	f 10.00 G used	Share Datasets	Remove
	Name / ID	Summary	Ф Туре	≎ VEuPathDB Websites St	atus 🌣 Owner	≎ Shared JE With	Created File Count	Size
	Guatemala vs Peru DELTAMETHRIN An albimanus (4037421)	Guatemala vs Peru: delta (An albimanus)	RNA-Seq (1.0)			IN An albimar	nus 🖉 Delete I	B Share 4
	eryth_vs_sporo (4036992)	eryth_vs_sporo	RNA-Seq (1.0)	Description: Guatemala v ID: 4037421 Data Type: RNA-Seq (Rna	Seq 1.0)			196
_	Erythrocyte and	eryth and	RNA-Seg	Summary: Guatemala vs Created: 12 minutes ago Dataset Size: 17.83 M	Peru: delta (An albimanus)	1	In Genome B	rowser Tracks
	cultured sporozoites (4036922)	cultures sporozoites	(1.0)	Quota Usage: 0.10% of 10 Available Searches: • Rt		hange)	Filename	Genome Browser Link
				Use This Data	set in Vector	Base	Per_delta3.bw	View in Genome Browser
				Use This Data		Base	Per_delta3.bw Per_delta2.bw	View in Genome Browser View in Genome Browser
					tion 🕤			

3. Explore the available search to identify genes with expression differences. Note that a custom graph is generated for your data in the results and on gene pages!

Identify Genes based on RNA-Seq user dataset (fold change)

4. Explore the coverage plots in the genome browser.

