Anatomy of the main page.

The Eukaryotic Pathogen, Vector and Host Informatics Resources (https://VEuPathDB.org) are comprised of a family of bioinformatics resources including an integrated functional genomics database for fungi and oomycetes - FungiDB. FungiDB (https://FungiDB.org) is a free online resource for data-mining and functional genomics analysis. It provides an easy-to-use, interactive interface to explore genomes, annotation, functional data (transcriptomics or proteomics), metabolic pathways and results from numerous genome-wide analyses (ie. InterPro scan, signal peptide and transmembrane domain predictions, orthology, etc.). FungiDB contains an expanding number of genomes from species spanning the Oomycetes and Fungi groups including but not limited to plant, animal, and human pathogens.

The modules presented here are designed to introduce you to FungiDB resources and teach you how to construct basic and complex search strategies (*in silico* experiments). Navigate to <u>https://fungidb.org/</u> and examine the organisation of the main landing page. Try to set up a few searches to learn your way around the interface.

Building linear and nested search strategies.

Learning objectives:

ത

- 1. Look for homozygous SNPs between two groups of *Aspergillus fumigatus* isolates (triazole sensitive and triazole resistant) to identify SNPs that may be important for drug resistance.
- 2. Map SNPs to A. fumigatus Af293 genes.
- 3. Identify genes up-regulated in drug-resistant strains A1160, HapB and 29.9 grown with itraconazole using the integrated RNA-Seq evidence.
- 4. Create a nested search for genes that have a predicted signal peptide OR a transmembrane domain OR both.

Genomic colocation operator. Maps SNPs from Step 1 to individual genes in *A. fumigatus* Af293 (Step 2). This operator will be the only search operator available when you create searches across different types of data (e.g. list of SNPs vs gene lists).

Intersect operator used in direct comparison (e.g. genes from Step2 that also fit search criteria in Step 3, etc.)

Intersect operator used in direct comparison (e.g. genes that have one characteristic OR the other OR BOTH)

a. Click on the SNPs menu and then select the Differences Between Two Groups of Isolates link to deploy a search.

Search for Other Data Types	Tools
expand all collapse all Find a search Find a search Popset Isolate Sequences Genomic Sequences Genomic Segments SNPs SNPs SNP ID(s) Genomic Location Differences Within a Group of Isolates Differences Between Two Groups of Isolates	BLAST Identify Sequence Similarities Results Analysis Analyze Your Strategy Results Sequence Retrieval Retrieve Specific Sequences using IDs and coordinates Companion Annotate your sequence and determine orthology, phylogeny & synteny EuPaGDT
 Find SNPs that distinguish between to of isolates based on the user supplied Of allele threshold for each group. Metabolic Faulways Compounds 	wo groups d major d and Entrez the Latest Pubmed and Entrez Results

- b. From the Organism drop down menu select *Aspergillus fumigatus* Af293 to bring up available datasets.
- c. Select the dataset titled "Genomic Context of Azole-Resistance Mutations in *Aspergillus fumigatus*".

Identify SNPs based on Differences Between Two Groups of Isolates						
Organism Aspergillus fumigatus Af293 Set A Isolates						
65 Set A Isolates Total expand all collapse all Find a variable Q	24 of 65 Set A Isolates selected data set × data set A data item that is an aggregate of other data items of the	e same type that have some	thing in common. Average	s and distributions can be determined for	r data sets.	
i≡ collection year	Keep checked values at top			65 (100%) of 65 Set A Isolates have	data for this variable	
III Sample type ▹ Sample source ▷ Geographic location	□ l≟ data set	Remaining Set A Isolates ? 65 (100%)	Set A Solates 2 65 (100%)	Distribution 🕢	% 🕜	
 Organism under investigation DNA sequencing 	Aligned genome sequence reads - A. fumigatus isolates	22 (34%)	22 (34%)		(100%)	
	Aligned SNPs - A. fumigatus Af1163 strain	1 (2%)	1 (296)	1	(100%)	
	 Aspergillus fumigatus Af293 Genome Sequence and Annotation 	1 (2%)	1 (2%)	1	(100%)	
	Genomic Context of Azole-Resistance Mutations in Aspergillus fumigatus	24 (37%)	24 (37%)		(100%)	
	 SNP calls on strains isolated from patients with PA and CNPA 	17 (26%)	17 (26%)	_	(100%)	

d. Define Set A isolates by expanding the "Organism under investigation" section on the left. Click on the "Triazoles" and select "Sensitive".

65 Set A Isolates Total	7 oʻ	65 Set A Isolates s	elected	dat	a set 🗙 🗍	Triazoles $ imes$:		
expand all collapse all Find a variable Q 3	Tria	azoles							
i≣ data set		Keep checked values at	top					24 (37%)	of 65 Set A Isolates have data for th
i≣ Collection year i≣ Sample type ▼ Sample source		là Triazoles	÷	Remai S Iso 24	ining Set A lates ?	4	lso 24	Set A plates 🕜	Distribution 😯
i≣ Host organism i≣ Health status		Resistant Sensitive		17 7	(71%) (29%)		17 7	(71%) (29%)	
 Geographic location Organism under investigation 									
I Fungal strain I Triazoles									
≣ Fungal organism									

- e. Define Set B isolates, except this time choose the Resistant group.
- f. Define SNP search stringency by setting thresholds for the following parameters:

Read frequency threshold >=

This parameter defines a stringency for data supporting a SNP call between an isolate in a group (Set A or Set B) and the reference genome (*A. fumigatus* Af293). Each nucleotide position of each isolate is compared to the reference genome. A SNP call is made if the portion of the isolate's aligned reads that support the SNP is above the Read Frequency Threshold. Select 80% to find high quality haploid SNPs. For heterozygous diploid/aneuploid SNPs select 40%.

To find high quality haploid SNP in triazole sensitive and resistant isolate groups (Set A and Set B, respectively), set this parameter to 80% for both groups.

Major allele frequency >=

The major allele frequency is the frequency of the most common SNP across the isolates in a Set. The default setting for this parameter is 80%. SNPs returned by the two groups search will have a different major allele call between Set A and Set B. NOTE: 100% is permissible and the most stringent since we are first identifying a SNPs from this set and then comparing it with the allele SNP in set B.

In this exercise, leave the parameter selection at default (80%) for Set A and Set B isolates.

Percent isolates with base call >=

Percent isolates with a base call defines the fraction of the selected isolates that must have a base call before a SNP is returned for that nucleotide position based on the remaining isolates that do have data.

Set this parameter to 80% for Set A and Set B isolates.

g. Deploy the search by clicking on the "Get Answer" button

Get Answer

2. Determine SNPs that map to A. fumigatus Af293 genes.

a. Click on Add Step and then Run a new Search for Genes. Select Taxonomy and then organism for identify genes in *Aspergillus fumigatus* Af293

		Add Step	
Run a new Search for Add contents of Basket Add existing Strategy	Genes Genomic Segments SNPs ORFs	Text Gene models Annotation, curation and identifiers Genomic Location Taxonomy Orthology and synteny	Organism
Add Step 2 :	Organism		
Organism			
1 sel	ected, out of 148		
fum		×	
 Fungi Eurotiomycet Aspergillu Asperg Asj Asperg Asj add these 	tes gillus fumigatus pergillus fumigatus A1163 pergillus fumigatus Af293 gillus novofumigatus pergillus novofumigatus II clear these select only these select all clear all	3 BT 16806	
Combine SNP	s in Step 1 with	Genes in Step 2:	
		0 1 Interse	ect 2 🔿 🔘 1 Minus 2
		O 1 Union	2 O 🔘 2 Minus 1
		Colocatio	/e to 2 , using genomic m

b. Notice that only one search operator is available. This is because you are comparing SNPs, which is a non-gene list, to a list of *A. fumigatus* Af293 genes.

c. Click on the Continue.... button to proceed to a search parameter selection window.

Continue....

d. Define parameters to return each Gene from Step 2 that overlaps with a SNP or multiple SNPs identified in Step 1.

"Return each Gene from Step 2 + whose exact region	overlaps + the	exact region of a SNP in Step 1 and is on either strand +
(10130 Genes in Step)		(1105 SNPs in Step)
Region	II	Region SNP
C Exact Upstream: 1000 bp Downstream: 1000 bp		O Exact Upstream: 1000 bp Downstream: 1000 bp
O Custom:		Ocustom:
begin at: $(start \ddagger) (+ \ddagger) 0$ bp end at: $(stop \ddagger) (+ \ddagger) 0$ bp		begin at: $(start \diamond)$ $(+ \diamond)$ 0 bpend at: $(stop \diamond)$ $(+ \diamond)$ 0 bp

The search you deployed mapped the location of 1105 SNPs to the genome of *A. fumigatus* and identified genes that harbor SNPs within ORFs.

3. Identify genes up-regulated in drug-resistant isolates using RNA-Seq evidence.a. Click Add Step to Run a new Search for Genes using RNA Seq Evidence

		 Add Step		×
Run a new Search for Transform by Orthology Add contents of Basket Add existing Strategy Filter by assigned Weight Transform to Pathways Transform to Compounds	Genes Genomic Segments SNPs ORFs	 Text Gene models Annotation, curation and identifiers Genomic Location Taxonomy Orthology and synteny Phenotype Genetic variation Transcriptomics Sequence analysis	 EST Evidence Microarray Evidence RNA Seq Evidence	

b. Filter datasets for fumigatus ('fum'') and select the dataset titled "Transcriptomes of itraconazole-resistant strains (Bowyer 2016)"

c. Select search parameters, reference and comparison samples. Look for up-regulated genes (at least 3 fold).

Reference Samples: Three strains grown in the absence of the itraconazole (-Itra). Comparison Samples: The same strains grown with itraconazole (+Itra)

Add Step 3 : A. fumigatus Af293 Transcriptomes of itraconazole-resistant	t strains RNASeq (fold change)
	Example showing one gene that would meet search criteria
return protein action + 2 Canas	(Dots represent this gene's expression values for selected samples)
that are up requiring the	Up-regulated
with a Fold change >= 3	* •
between each gene's average	
(or a Floor of 10 reads (13 FPKM) +) 10 with	Average
in the following Reference Samples	S 3 fold Expression
	Comparison
2 A1160-ltra	Average
A1160+ltra	Expression
HapB-Itra	Level
2 29.9-Itra	Reference
select all clear all	Samples Samples
	oumpres oumpres
and its average	
(or the Floor selected above)	You are searching for genes that are up-regulated between at least two
in the following Comparison Samples	reference samples and at least two comparison samples.
	For each gene, the search calculates:
🖸 A1 160+ltra	
HapB-Itra	fold change = average expression level in comparison
29.9-ltra	
29.9+itra	and returns genes when fold change >= 3.
select all clear all	to narrow the window, use the maximum reference value, or minimum comparison value. To broaden the window, use the minimum reference
	value, or maximum comparison value.
	See the detailed help for this search.
	* or FPKM Floor, whichever is greater
Combine Genes in Step 2 with Genes in Step 3:	
2 Intersect 3	2 Minus 3
C 👥 2 Union 3	3 Minus 2
C Pelative to 3, us	ing genomic colocation
(Genes)	
(workey)	(E13)
Organis	m Transcriptomes o
10130 Ger	nes 145 Genes
Edit)	
	Add Step
1105 SNPs 352 Gene	es 10 Genes
Step 1 Step 2	Step 3

4. Create a nested search for genes that have a predicted signal peptide OR a transmembrane domain OR both.

Up until now we have been creating linear, non-nested searches where a single operator (colocation or intersect) combined data types from two search steps (e.g. Step 2 and Step 1).

In the next search, we will use a nested strategy approach to:

- access two data types (signal peptide and transmembrane domain predictions)

- find genes that (1) have a predicted signal peptide or (2) have a transmembrane domain, or (3) have both

- intersect signal peptide and transmembrane domain predictions results with Step 3.

a. Click Add Step to Run a new Search for Genes in Protein targeting and localization, Predicted Signal peptide data

Add Step							
Run a new Search for Transform by Orthology Add contents of Basket Add existing Strategy Filter by assigned Weight Transform to Pathways	Genes Genomic Segments SNPs ORFs	Text Gene models Annotation, curation and identifiers Genomic Location Taxonomy Orthology and synteny	Predicted Signal Peptide Transmembrane Domain Count				

Add Step 4 : Predicted Signal Peptide			
Organism			
1 selected, out of 148			
fum x			
 Fungi Eurotiomycetes Aspergillus Aspergillus fumigatus Aspergillus fumigatus A1163 Aspergillus fumigatus A1293 Aspergillus novofumigatus IBT 16806 add these clear these select only these select all clear all 			
Advanced Parameters			
Combine Genes in Step 3 with Genes in S	Step 4:		
000	3 Intersect 4	0 🕥 3 Minus 4	
ŐŎ	3 Union 4	4 Minus 3	
	3 Relative to 4, colocation	using genomic	

b. Hover over the step, click Edit, and select Make Nested Strategy

(Edit) scriptomes 90 Genes	Ec Signal Pep <u>1625 Genes</u>	lit)	
Show Result	s. Click Edit to m	ake changes.	tep
21 Genes	2 Genes		
Step 3	Step 4	_	

STEP 4 : Sign Expand this step in a new panel to add nested steps. (Use this to build a non-linear strategy)							
Organism	:	Aspergillus fumigatus Af293					
Minimum SignalP-NN Conclusion Score	:	3					
Minimum SignalP-NN D-Score	:	0.5					
Minimum SignalP-HMM Signal Probability	:	0.5					
Matches any or all advanced parameters	:	any					
Results: 1625 Genes							
Give this search a weight							

A new search window, highlighted in different color, will appear underneath of your current strategy (Expanded View of Step Signal Pep).

c. Use the nested strategy window to create a non-linear search - click Add Step within the new window. Run a search for transmembrane domains and choose union operator to look for all combinations:

	Add Step 2 : Transmembrane Domain Count	
	🛿 Organism	
	1 selected, out of 148 (m *) Crugiony Crugiony Crugiony Aspengilars functionata Aspengilars functionata Aspengilars functionata Aspengilars novolumingatus Aspengilars novolumingatus Aspeng	
	Minimum Number of Transmembrane Domains	
	Maximum Number of Transmembrane Domains	
	99	
	Combine Genes in Step 1 with Genes in Step 2: 1 Intersect 2 0 1 Minus 2 0 1 Union 2 0 2 Minus 1 Helative to 2, using genomic colocation	
(Genes)		0 0/ *
Transcriptomes Toriso Gaues Toriso Gaues Toriso Gaues Toriso Sales Step 1 Toriso Sales Step 2 Toriso Sales Toriso Gaues Toriso Toriso Toriso Gaues Toriso Gaue	Strategy: 07/Maj2/2/20 Webinar Fungiba: SNPS > Iaxonomy > HVA	Seg > signar+ iransmemorane doornams ee View Description Rename Duplicate Save As Share Delete
Expanded View of Step Signal Pep Transmb Dom 2012 Genes Signal Pep 9007 Genes Step 1 Step 2 Add Ste		

To close the expanded view, click on the X on the right. You can always review/modify this step by clicking on the Edit button, which is located at the top corner of each search step.